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Abstract

A general kinetic equation is suggested in order to describe solid state decompositions or, more
generatly, solid state reactions and transformations on the basis of some existing general equations.
This differential equation can be expressed as: do/de=k[(1-o)"*{[1-{1~0) "]/(1-g}}", where
o represents the degree of conversion, k is the rate constant while g, x and y are characteristic
parameters for a given mechanism.
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Introduction

In the literature many papers have been dedicated to the derivation of Kinetic
equations describing solid state reactions and transformations [1-11]. As the
number of particular kinetic equations has considerably increased, some at-
tempts have been made in the last decades with the aim of deriving general rate
equations suitable for describing the relatively high number of particular cases
[3,5-8].

In order to describe solid state reactions controlled by the movement of phase
boundaries, by simple nucleation as well as by nucleation followed by nuclei
growth and diffusion, Sestdk and Berggren {6] suggested the following general
equation:

do/dr = k(1 - )" [— In(1 - )]° (1)
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A critical analysis of Eq. (1) due to Gorbachev {8] shows that for isothermal
conditions it can be transformed into three equations each being characterized by
two exponents. Two of these equations are widely used and can be expressed as

dovds = k(1 — o)"[—In(! — o)]° (2)
and
dovdr = k(1 — a)'o™ (3

Based on the well known theory of nucleation and nucleus growth, Ng pro-
posed the following general equation for solid state decomposition kinetics [7]

dovdr = ko' (1 — )’ ® (4}

where @ and b are parameters lying between zero and unity respectively. It is also
important to notice that for a=1-m and b=1-n Eq. (4) becomes identical with
Eq. (3).

Taking into account the importance of the above presented problem, this pa-
per is dedicated to the identification of a more general kinetic equation which in-
cludes most of the expressions used to describe solid state reactions with hetero-
geneous decompositions as particular cases,

The general equation

Although Egs (1)—(4) can be employed to derive several particular rate equa-
tions from literature, there are a number of mechanisms, ¢.g. D3 and D4, for
which the corresponding rate equations cannot be obtained on the basis of the ex-
isting general equations [3, 6, 7]. Taking this problem into consideration the cen-
tral objective of this paper is to find, by using a formal approach, a genera1 form
Of arate equaugn which is ﬂnn]lr‘ah]P to most of ThF‘ kinetic PXI’H"PQQ]DHQ used in

solid state reactions. It 5hould be emphasized that in our attempt, instead of de-
ducing the required general equation by employing the existing mechanistic
theories, we prefer to try an alternative formal approach by exploiting the exist-
ing general equations, i.e. Eqs (2) and (3). Even though this procedure can be
considered very unusual, the results obtained prove the utility of the proposed al-
ternative method.

In order to derive the general equation we should analyse in detail Eqs (2) and

(3). First let us rewrite these equations in the following equivalent forms
dovds = k[(1 — o) 1"[=In{1 — o)]° (5)

and

dovdt = k[(1 — o)"1™ ™ (o1 - o)™ (6)
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Secondly, it is important to notice in connection with Eqs (5) and (6) that

[deA1 = )" = [-In(1 - @] (7)
0
and
Jaos1 ~ 0 = fo(1 - e} (8)
0
he generalization of these findings is obvious and consequently we can

wrlte the general equation as
dovdr = k[(1 - o) [h(e)]? (9
where
h(er) = [de/(1 - er)? (10)
0

whereas g, x and y are suitable parameters that characterize a given mechanism.
After performing the integration in Eq. (10) one obtains

Aoy =[1-(1- ) U1 ~q)  gq=]1 (10
or
A(o) = [-ln(l- )]  g=1 (12)
Since
lim{l = (1~ )™ W1 ~gp=[-In(1 —x)] g1 (13)

in the following we will consider that
(o) =[1 - (1 — o) ™1~ g) (14)

without leaving out of consideration that for =1 relationship (14) is in fact rela-
tionship (12).

Bearing in mind relationship (14), Eq. (9) can be transcribed into the form
(15)

1
i

dovds = k[(1 — a]¥[1 - (1 - ) Y1 - gl
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which represents the general kinetic equation for solid state reactions we have
been looking for, From Eq. (15) the corresponding differential conversion func-
tion, fla), can be expressed as

Ao = [(1 =o' = (1= 0041 - g)f (16)

Finally, let us notice that for g=1; x=r and y=p Eq. (15) becames Eq. (2) while
for g=2; x=(m+n)/2 and y=m the general equation turns into Eq. (3).

Applications and discussion

Keiauonsmp (16) has been appllea in order to derive several par ticular f r“rs
of it describing solid state reactions and transformations. Table 1 lists the
usual mechanisms as known from the literature.

Besides the form of f{a), the values corresponding to ¢, x and y and the sym-
bols characteristic of the mechanisms and the type of the o~ curve, that is (A) for
acceleratory, (S) for sigmoid-shaped and (D) for deceleratory, are given.

T n F1
The conversion functions corresponding to mechanisms listed in Table 1 rep-

resent the starting point for discussion. First it is important to notice that the
amount of reactant at a given time is proportional to (1-c), the fraction of the un-
reacted reactant, while the amount of product is proportional to ¢ representing
the fraction of the transformed reactant. On the other hand, many rate equations
include a number of functions, i.e. [-In(1 —a)] and [1 —(1-}'”], which increase
with increasing . Consequently, we consider that the amount of product is also
related to these functions, Moreover, for qualitative considerations, we will as-
sume that the amount of product is related to these functions, i.e. the higher the
values of these functions the more product is formed.

Taking into account the above-mentioned observations and the data presented
in Table 1, we can infer the following:

1. For mechanisms 1 and 2, which produce acceleratory ¢t curves, the reac-
tion rates are various functions of the amount of product and do not depend on the
amount of reactant.

2.In the case of the mechanisms producing sigmoid-shaped ot curves the re-
action rates are various functions of the amount of reactant as well as of the
amount of product.

3. For the D1 and D2 mechanisms the reaction rates change inversely the
amount of product and do not depend on the amount of reactant.

4. The D3 and D4 diffusional mechanisms are characterized by rate equations
for which the reaction rates change directly with the amount of reactant and in-
versely to the amount of product.

5. For all the diffusional mechanisms y=—1. Consequently, one has to take
into account this condition when searching for new mechanisms describing reac-
tions controlled by diffusion.
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Conclusions

A new general equation (Eq. (15)) describing the kinetics of solid state reac-
tions and particularly the kinetics of heterogeneous decompositions has been
presented. This equation was applied successfully in obtaining a number of par-
ticular rate equations taken from the literature.
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